CARACTERIZACIÓN ELÉCTRICA DEL EFECTO SUMOTO EN UN AISLANTE LÍQUIDO VEGETAL
Palabras clave:
Efecto Sumoto, Dieléctricos Líquidos, Movimiento EHD, Descargas ParcialesResumen
En el presente trabajo se muestra los resultados preliminares de caracterización eléctrica del efecto Sumoto. Este fenómeno aparece en una interface entre un dieléctrico liquido y aire. Cuando se aplica una alta tensión a un electrodo sumergido en el liquido, se forma un cono ascendente de aceite sobre el conductor. Este cono de fluido posee una carga eléctrica asociada. Se presenta su caracterización en términos de los parámetros siguientes: Tensión positiva C.D., forma del electrodo de baja tensión, pureza del líquido, nivel de fluido en el contenedor.Citas
Bartnikas, R. (2002). Partial discharges. Their mechanism, detection and measurement. IEEE Transactions on Dielectrics and Electrical Insulation, 9(5), 763-808. doi: 10.1109/TDEI.2002.1038663
Guastavino, F., Torello, E., Ratto, A., Dardano, A., Secci, M., Ferraro, F., & Pistone, D. (2012, September). Diagnosis of common defects inside cast Resin current transformers by digital partial discharges acquisition. In 2012 XXth International Conference on Electrical Machines (pp. 1647-1652). IEEE. doi: 10.1109/ICElMach.2012.6350101
Yadav, R., Kumar, S., Venkatasami, A., Lobo, A. M., & Wagle, A. M. (2008, April). Condition based maintenance of power transformer: A case study. In 2008 International Conference on Condition Monitoring and Diagnosis (pp. 502-504). IEEE. doi: 10.1109/CMD.2008.4580335
Korolev, A. (2018). Instability of Dielectric Liquid Surface under the Action of HV Corona Discharge Pulses. Open Access Library Journal, 5(01), 1. doi: 10.4236/oalib.1104269
Mahmoudi, S. R., Adamiak, K., & Castle, G. P. (2011). Spreading of a dielectric droplet through an interfacial electric pressure. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 467(2135), 3257-3271. doi:10.1098/rspa.2011.0220
Tsuruta, T., Tsukahara, S., & Fujiwara, T. (2008). Microscopic measurements of deformation of liquid surfaces induced by localized direct current electric field. Analytical Sciences, 24(1), 121-126. https://doi.org/10.2116/analsci.24.121
Kochurin, E. A., & Zubarev, N. M. (2018). Gravity-capillary waves on the free surface of a liquid dielectric in a tangential electric field. IEEE Transactions on Dielectrics and Electrical Insulation, 25(5), 1723-1730. doi: 10.1109/TDEI.2018.007091
Gashkov, M. A., Zubarev, N. M., & Kochurin, E. A. (2015). Nonlinear waves on the free surface of a dielectric liquid in an oblique electric field. Journal of Experimental and Theoretical Physics, 121(3), 553-558. doi: https://doi.org/10.1134/S1063776115100064
Ten Have, E. S., & Vdovin, G. (2012). Novel method for measuring surface tension. Sensors and Actuators A: Physical, 173(1), 90-96.doi: https://doi.org/10.1016/j.sna.2011.10.021
Sato, M., Kudo, N., & Saito, N. (1998). Surface tension reduction of liquid by applied electric field using vibrating jet method. IEEE Transactions on Industry Applications, 34(2), 294-300. doi: 10.1109/IAS.1996.559306
Watanabe, A. (1973). Investigations of some electric force effects in dielectric liquid. Japanese Journal of Applied Physics, 12(4), 593.
Sumoto, I. (1956). Climbing of liquid dielectrics up along electrode. Oyo Butsuri, 25, 264-265.
Pickard, W. F. (1961). Experimental investigation of the Sumoto effect. Journal of Applied Physics, 32(10), 1888-1893. doi: https://doi.org/10.1063/1.1728258
Pickard, W. F. (1962). An explanation of the dc Sumoto effect. Journal of Applied Physics, 33(3), 941-942. doi: https://doi.org/10.1063/1.1777194
Pérez, A. T. (1997). Rose-window instability in low conducting liquids. Journal of Electrostatics, 40, 141-146. doi: https://doi.org/10.1016/S0304-3886(97)00028-4
Mori, K., Yamamoto, H., Takemura, K., Yokota, S., & Edamura, K. (2011). Dominant factors inducing electro-conjugate fluid flow. Sensors and Actuators A: Physical, 167(1), 84-90. doi: https://doi.org/10.1016/j.sna.2011.01.009