Efecto antagónico de cepas probióticas contra dos cepas patógenas resistentes a antibióticos: Salmonella Thyphimuirum y E. coli O157:H7

Autores/as

  • A. Berenice Arias O.
  • M. de la Luz Reyes M.
  • M. Lilia Navarro V.
  • Y. Berenice Solis C.
  • Mayra Márquez G.
  • Gloria Sánchez S.
  • Raúl Snell C.
  • Raquel Zuñiga R.

Palabras clave:

Resistencia a antibióticos, Antagonismo bacteriano, ácido láctico

Resumen

El objetivo de este estudio fue probar la eficiencia de las cepas probióticas Lactobacillus acidophilus NCFM (L. acidophilus), Lactobacillus rhamnosus HN001 (L. rhmanosus) y Bifidobacterium animalis BI07 (B. animalis) para antagonizar los patógenos resistentes a antibióticos Salmonella enteritidis var Thyphimurium (Salmonella Thyphimurium) y Escherichia coli O157:H7 (E. coli O157:H7). Las tres cepas probióticas mostraron poseer un efecto antagónico contra las cepas patógenas Salmonella Thyphimurium y E. coli O157:H7 resistentes a antibióticos. En la prueba de “Well Diffusion”, L. acidophilus y L. rhamnosus presentaron reducciones estadísticamente semejantes entre ellas (P >0.05) de 37-41 mm para E. coli O157:H7 y de 32 – 41 mm para Salmonella Thyphimurium, mientras que B. animalis mostró reducciones menores (P<0.05) para ambas bacterias patógenas de 6 y 5 mm respectivamente. Así mismo, los sobrenadantes de L. rhamnosus y L. acidophilus tuvieron un efecto significativo (P<0.05) y semejante en la reducción de la población (6-7 LOG UFC para Salmonella Thyphimurium y 3-5 LOG UFC para E. coli O157:H7), mientras que B. animalis solo fue capaz de inhibir el crecimiento de ambas cepas patógenas durante 24 h de incubación. Las diferencias en el efecto antagónico de los sobrenadantes se explica debido a la mayor presencia de ácido láctico de la cepa L. rhamnosus (265.69 ± 7.35 mM) seguida de L. acidophilus (163.02 ± 17.21 mM), y la menor de B. animalis (121.69 ± 5.41 mM), (P <0.05), aunque estas inhibiciones pueden ser explicadas por la posible presencia de bacteriocinas, no determinadas en este estudio. En el ensayo en co-cultivo, Salmonella Typhimurium presenta una mayor inhibición que E. coli O157:H7 (P <0.05), ya que a las 16 h de incubación, L. acidophilus redujo su población al límite de detección. El resto de las combinaciones en esta prueba, no fueron significativas (P >0.05).

Citas

World Health Organization. 2001. Antibiotic resistance: synthesis of recommendations by expert policy groups. Alliance

for the Prudent Use of Antibiotics. Consulted on December (2012). Available on

http://whqlibdoc.who.int/hq/2001/WHO_CDS_CSR_DRS_2001.10.pdf

Centers for Disease Control and Prevention (CDC). (2013). Surveillance for Foodborne Disease Outbreaks United States,

-2010. Available on http://www.cdc.gov/mmwr/preview/mmwrhtml/mm6203a1.htm?s_cid=mm6203a1_w

INPPAZ OPS/ OMS. 2002 .Sistema de información para la vigilancia de las enfermedades transmitidas por los alimentos

SIRVETA. Disponible en: http://www.panalimentos.org/sirvetaipz/report_eta01.asp

Fernández Escartin E. 2008. Microbiología e inocuidad de los alimentos. Universidad Autónoma de Querétaro

Diez González F. and Y. Karaibrahimoglu. (2004). Comparison of the glutamate-, arginine- and lysine-dependent acid

resistance systems in Escherichia coli O157:H7. Journal of Applied Microbiology, 96:1237–1244

Moellering R. C. (2007). Global antibacterial resistance issues. Microbiol. Austr. 28:157-159.

Bester L. A., Essack S. Y. (2010). Antibiotic Resistance Via the Food Chain: Fact or Fiction? S Afr J Sci. 106:1-5.

Hütt P., J. Shchepetova, K. Löivukene, T. Kullisaar and M. Mikelsaar. (2006). Antagonistic activity of probiotic

lactobacilli and bifidobacteria against enter and uropathgens. Journal of Applied Microbiology 100:1324-1332.

Food and Agriculture Organitation of the United Nations. (2001). Health and Nutricional Properties of Probiotics in Food

including Power Milk with Live Lactic Acid Bacterial. Report of a Joint FAO/WHO Expert Consultation on Evaluation

of Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria.

Consulted on February 2012. Available on http://www.who.int/foodsafety/publications/fs_management/en/probiotics.pdf

Wallace T. C., Guarner F., K. Madsen, M. D. Cabana, G. Gibson, E. Hentges, M. E. Sanders. (2011). Human gut

microbiota and its relationships to health and disease. Nutrition Reviews 69:392-403.

Shah N. P. (2007). Functional cultures and health benefits. International Dairy Journal 17:1262-1277.

Ventura M., D. Van Sinderen, G. F. Fitzgerald, R. Zink. (2004). Insights into taxonomy, genetics and physiology of

bifidobacteria. Antonie van Leeuwenhoek 86:205-223.

Santosa S., E. Farnworth, P. J. H. Jones. (2006). Probiotics and Their Potential Health Claims. Nutrition Reviews

:265-274.

Vrese M., P. R. Marteu. (2007). Probiotics and Prebiotics: Effects on Diarrhea. The Journal of Nutrition; 137:803S-811.

Kailasapthy K., J. Chin. (2000). Survival and therapeutic potential of probiotics organisms with reference to

Lactobacillus acidophilus and Bifidobacterium spp. Immunology and Cell biology; 78:80-88.

Schillinger U., F. Lücke. (1989). Antibacterial Activity of Lactobacillus sake Isolated from Meat. Appl. Envron.

Microbiol. 55:1901-1906.

Fayol-Messaoudi D., Berger C. N., Coconnier-Polter M. H., Liévin-Le V. and Servin A. (2005). pH-, Lactic Acid-, and

Non-Lactic Acid-Dependent Activities of Probiótic Lactobacilli against Salmonella enterica Serovar Typhimurium.

Appl. Environ. Microbiol. Vol 71:10 6008-6013

Fooks LJ, Gibson GR. (2002). Probiotics as modulators of the gut flora. Br J Nutr. Sep;88 Suppl 1:S39-49.

Makras L., De Vuyst L., (2006). The in vitro inhibition of Gram-negative pathogenic bacteria by bifidobacteria is caused

by the production of organic acid. International Dairy Journal.16:1049-1057.

Makras L., V. Triantafyllou, D. Fayol-Messaoudi, T. Adriany, G. Zoumpopoulou, E. Tsakalidou, A. Servin, L De Vuyst.

(2006). Kinetic analysis of antibacterial activity of probiotic lactobacilli towards Salmonella enteric serovar

Thyphimurium reveals a role for lactic acid and other inhibitory compounds. Research in Microbology 157:241-247.

De Keersmaecker S. C. J., T. L. A. Verhoven, J. Desair, K. Marchal, J. Vandleyden. (2006). Strong antimicrobial

activity of Lactobacillus rhamnosus GG against Salmonella Typhimurium is due to accumulation of lactic acid.

Microbiol Lett 259:89-96.

Clinical and Laboratory Standards Institute. (2008). Performance Standars for Antimicrobial Susceptibility Testing;

Eighteenth Informational Supplement. M100-S18. Vol 28. No. 1

Clinical and Laboratory Standards Institute. (2003). Performance Standards for Antimicrobial Disk Susceptibility Tests;

Approved Standar-Eight Edition. M2-A8. Vol 23 No. 1

Lavermicocca P., Valerio F., Lonigro S., Di Leo A., Viosconti A. (2008). Antagonistic Activity of Potencial Probiotic

Lactobacilli Against the Ureolytic Pathogen Yersinia enterocolítica. Curr. Microbiol. 56:175-181.

Castillo A., L. M Lucia, G. K. Kemp, G. R. Acuff. (1999). Reduction of Escherichia coli O 157:H7 and Salmonella

Thyphimurium on Beef Carcass Surface Using Acidified Sodium Clorite. J. Food Prot 62:580-584.

Olatoye I., E. Adesola, G, Ogundipe. (2012). Multidrug Resistant Escherichia coli O157:H7 Contamination of Beef and

Chcken in Municipal Abattors of Southwest Nigeria. Nature and Science 10:125-132.

Zadi M., V. León, C. Canche, C. Perez, S. Zhao, S. K. Hubert. (2007). Rapid and widespread dissemination of

multidrug-resistant bla CMY-2 Salmonella Thyphimurium in Mexico. Journal of Antimicrobial Chemotherapy 60: 398-401.

Hasman H., D. Mevius, K. Veldman, I. Olsen and F. M. Aarestrup. (2005). β–lactamases among extended-sprectum βlactamase (ESBL)-resistant Salmonella from poultry, poultry products and human patient in The Netherlands. Journal of

Antimicrobial Chemotherapy 56:115-121.

Antunes P., Machado J., Peixe L. (2006). Characterization of antimicrobial resistance and class 1 and 2 integrons in

Salmonella enterica isolates from different sources in Portugal. Journal of Antimicrobial Chemotherapy 58: 297-304

Olufemi O. I., E. Adesola A. 3, G. Adetunji. 2012. Multidrug Resistant Escherichia coli O157 Contamination of Beef

and Chicken in Municipal Abattoirs of Southwest Nigeria. Nature and Science 2012;10(8).

Hütt P., J. Shchepetova, K. Löivukene, T. Kullisaar and M. Mikelsaar. 2006. Antagonistic activity of probiotic

lactobacilli and bifidobacteria against enter- and uropathgens. Journal of Applied Microbiology 100:1324-1332.

Naghizadeh R. S., N. Farahmand, I. Ouoba, J. Sutherland and H. Ghoddusi. (2012). In vitro assessment of the

Bifidobacterium spp. for antimicrobial activities. J Food Process Technol, 3:10

Vinothkumar P., P.Sheik Mohamed, O. S. Aysha, S. Valli, P. Nirmala, A. Reena, EK. Elumalai. (2011). Microbial

Product Act As a Probiotic against Human Intestinal Pathogens. International Journal of Pharmaceutical & Biological

Archives 2:1172-1174

Bilkova A., H. Kinova Sepova, M. Bukovsky, L. Bezakova. (2011). Antibacterial potential of lactobacilli isolated from a

lamb. Veterinarni Medicina, 56, (7): 319–324

Collado M. C., Hernández M., M. Sanz, (2005). Production of bacteriocin-like compounds by human fecal

Bifidobacterium strains. J Food Prot 68:1034-1040.

Delgado S., E. O´Sullivan, G. Fitzgerald and B. Mayo. (2007). In vitro evaluation of the probiotic properties of human

intestinal Bifidobacterium species and selection of new probiotic candidates. J. Appl. Microb. 104:1119-1127.

Alakomi A. L., E. Skytta, M. Saarela, T. Mattila, K. Latva-Kala, L. M. Helander. (2000). Lactic Acid Permeabilizes

Gram-Negative Bacteria by Disrupting the Outer Membrane. Appl. Envir. Microb. 66:2001-2005.

Ananou S., A. Galvéz, M. Martínez-Bueno, M. Maqueda and E. Valdivia. (2005). Synergistic effect of enterocin AS-48

in combination with outer membrane permeabilizing treatments against Escherichia coli O157:H7. J Appl Microb

:1364-1372.

Russell, J.B. and F. Diez-Gonzalez. (1998). The effects of fermentation acids on bacterial growth. Advances in

Microbial Physiology 39:206-235. 11.

Presser K. A., Ratkowsky D.A., Ross T. (1997). Modelling the growth rate of Escherichia coli as a function of pH and

lactic acid concentration. Appl. Envirom. Microbiol. 63:2355-2360.

Eklund T. (1983). The antimicrobial effect of dissociated and undissociated sorbic acid at different pH levels. J Appl

Baceriol 54:383-389.

Portella A. C. F., S. Karp, G. Newton, A. L. Woiciechwski, J. L. Parada, C. R. Soccol. (2009). Modelling Antagonic

Effect to of Lactic Acid Bacteria Supernatants on Some Pathogenic Bacteria. Braz. Arch. Biol. Tech. 52:29-36.

Bielecka M., Biedrzycka E., W. Smoragiewicz, M. Smieszek. (1998). Interaction of Bifidobacterium and Salmonella

during associated growth. International Journal of Food Microbiology, 45:151-155.

Kailasarapathy K. and J. Chin. (2000). Survirval and terapheutic potential of probiotics organism with reference to

Lactobacillus acidophilus and Bifidobacterium spp. Inmunology and Cell Biology. 78:80-88

Descargas

Publicado

30-09-2013

Número

Sección

Artículos e-gnosis