Efecto antagónico de cepas probióticas contra dos cepas patógenas resistentes a antibióticos: Salmonella Thyphimuirum y E. coli O157:H7
Palabras clave:
Resistencia a antibióticos, Antagonismo bacteriano, ácido lácticoResumen
El objetivo de este estudio fue probar la eficiencia de las cepas probióticas Lactobacillus acidophilus NCFM (L. acidophilus), Lactobacillus rhamnosus HN001 (L. rhmanosus) y Bifidobacterium animalis BI07 (B. animalis) para antagonizar los patógenos resistentes a antibióticos Salmonella enteritidis var Thyphimurium (Salmonella Thyphimurium) y Escherichia coli O157:H7 (E. coli O157:H7). Las tres cepas probióticas mostraron poseer un efecto antagónico contra las cepas patógenas Salmonella Thyphimurium y E. coli O157:H7 resistentes a antibióticos. En la prueba de “Well Diffusion”, L. acidophilus y L. rhamnosus presentaron reducciones estadísticamente semejantes entre ellas (P >0.05) de 37-41 mm para E. coli O157:H7 y de 32 – 41 mm para Salmonella Thyphimurium, mientras que B. animalis mostró reducciones menores (P<0.05) para ambas bacterias patógenas de 6 y 5 mm respectivamente. Así mismo, los sobrenadantes de L. rhamnosus y L. acidophilus tuvieron un efecto significativo (P<0.05) y semejante en la reducción de la población (6-7 LOG UFC para Salmonella Thyphimurium y 3-5 LOG UFC para E. coli O157:H7), mientras que B. animalis solo fue capaz de inhibir el crecimiento de ambas cepas patógenas durante 24 h de incubación. Las diferencias en el efecto antagónico de los sobrenadantes se explica debido a la mayor presencia de ácido láctico de la cepa L. rhamnosus (265.69 ± 7.35 mM) seguida de L. acidophilus (163.02 ± 17.21 mM), y la menor de B. animalis (121.69 ± 5.41 mM), (P <0.05), aunque estas inhibiciones pueden ser explicadas por la posible presencia de bacteriocinas, no determinadas en este estudio. En el ensayo en co-cultivo, Salmonella Typhimurium presenta una mayor inhibición que E. coli O157:H7 (P <0.05), ya que a las 16 h de incubación, L. acidophilus redujo su población al límite de detección. El resto de las combinaciones en esta prueba, no fueron significativas (P >0.05).
Citas
World Health Organization. 2001. Antibiotic resistance: synthesis of recommendations by expert policy groups. Alliance
for the Prudent Use of Antibiotics. Consulted on December (2012). Available on
http://whqlibdoc.who.int/hq/2001/WHO_CDS_CSR_DRS_2001.10.pdf
Centers for Disease Control and Prevention (CDC). (2013). Surveillance for Foodborne Disease Outbreaks United States,
-2010. Available on http://www.cdc.gov/mmwr/preview/mmwrhtml/mm6203a1.htm?s_cid=mm6203a1_w
INPPAZ OPS/ OMS. 2002 .Sistema de información para la vigilancia de las enfermedades transmitidas por los alimentos
SIRVETA. Disponible en: http://www.panalimentos.org/sirvetaipz/report_eta01.asp
Fernández Escartin E. 2008. Microbiología e inocuidad de los alimentos. Universidad Autónoma de Querétaro
Diez González F. and Y. Karaibrahimoglu. (2004). Comparison of the glutamate-, arginine- and lysine-dependent acid
resistance systems in Escherichia coli O157:H7. Journal of Applied Microbiology, 96:1237–1244
Moellering R. C. (2007). Global antibacterial resistance issues. Microbiol. Austr. 28:157-159.
Bester L. A., Essack S. Y. (2010). Antibiotic Resistance Via the Food Chain: Fact or Fiction? S Afr J Sci. 106:1-5.
Hütt P., J. Shchepetova, K. Löivukene, T. Kullisaar and M. Mikelsaar. (2006). Antagonistic activity of probiotic
lactobacilli and bifidobacteria against enter and uropathgens. Journal of Applied Microbiology 100:1324-1332.
Food and Agriculture Organitation of the United Nations. (2001). Health and Nutricional Properties of Probiotics in Food
including Power Milk with Live Lactic Acid Bacterial. Report of a Joint FAO/WHO Expert Consultation on Evaluation
of Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria.
Consulted on February 2012. Available on http://www.who.int/foodsafety/publications/fs_management/en/probiotics.pdf
Wallace T. C., Guarner F., K. Madsen, M. D. Cabana, G. Gibson, E. Hentges, M. E. Sanders. (2011). Human gut
microbiota and its relationships to health and disease. Nutrition Reviews 69:392-403.
Shah N. P. (2007). Functional cultures and health benefits. International Dairy Journal 17:1262-1277.
Ventura M., D. Van Sinderen, G. F. Fitzgerald, R. Zink. (2004). Insights into taxonomy, genetics and physiology of
bifidobacteria. Antonie van Leeuwenhoek 86:205-223.
Santosa S., E. Farnworth, P. J. H. Jones. (2006). Probiotics and Their Potential Health Claims. Nutrition Reviews
:265-274.
Vrese M., P. R. Marteu. (2007). Probiotics and Prebiotics: Effects on Diarrhea. The Journal of Nutrition; 137:803S-811.
Kailasapthy K., J. Chin. (2000). Survival and therapeutic potential of probiotics organisms with reference to
Lactobacillus acidophilus and Bifidobacterium spp. Immunology and Cell biology; 78:80-88.
Schillinger U., F. Lücke. (1989). Antibacterial Activity of Lactobacillus sake Isolated from Meat. Appl. Envron.
Microbiol. 55:1901-1906.
Fayol-Messaoudi D., Berger C. N., Coconnier-Polter M. H., Liévin-Le V. and Servin A. (2005). pH-, Lactic Acid-, and
Non-Lactic Acid-Dependent Activities of Probiótic Lactobacilli against Salmonella enterica Serovar Typhimurium.
Appl. Environ. Microbiol. Vol 71:10 6008-6013
Fooks LJ, Gibson GR. (2002). Probiotics as modulators of the gut flora. Br J Nutr. Sep;88 Suppl 1:S39-49.
Makras L., De Vuyst L., (2006). The in vitro inhibition of Gram-negative pathogenic bacteria by bifidobacteria is caused
by the production of organic acid. International Dairy Journal.16:1049-1057.
Makras L., V. Triantafyllou, D. Fayol-Messaoudi, T. Adriany, G. Zoumpopoulou, E. Tsakalidou, A. Servin, L De Vuyst.
(2006). Kinetic analysis of antibacterial activity of probiotic lactobacilli towards Salmonella enteric serovar
Thyphimurium reveals a role for lactic acid and other inhibitory compounds. Research in Microbology 157:241-247.
De Keersmaecker S. C. J., T. L. A. Verhoven, J. Desair, K. Marchal, J. Vandleyden. (2006). Strong antimicrobial
activity of Lactobacillus rhamnosus GG against Salmonella Typhimurium is due to accumulation of lactic acid.
Microbiol Lett 259:89-96.
Clinical and Laboratory Standards Institute. (2008). Performance Standars for Antimicrobial Susceptibility Testing;
Eighteenth Informational Supplement. M100-S18. Vol 28. No. 1
Clinical and Laboratory Standards Institute. (2003). Performance Standards for Antimicrobial Disk Susceptibility Tests;
Approved Standar-Eight Edition. M2-A8. Vol 23 No. 1
Lavermicocca P., Valerio F., Lonigro S., Di Leo A., Viosconti A. (2008). Antagonistic Activity of Potencial Probiotic
Lactobacilli Against the Ureolytic Pathogen Yersinia enterocolítica. Curr. Microbiol. 56:175-181.
Castillo A., L. M Lucia, G. K. Kemp, G. R. Acuff. (1999). Reduction of Escherichia coli O 157:H7 and Salmonella
Thyphimurium on Beef Carcass Surface Using Acidified Sodium Clorite. J. Food Prot 62:580-584.
Olatoye I., E. Adesola, G, Ogundipe. (2012). Multidrug Resistant Escherichia coli O157:H7 Contamination of Beef and
Chcken in Municipal Abattors of Southwest Nigeria. Nature and Science 10:125-132.
Zadi M., V. León, C. Canche, C. Perez, S. Zhao, S. K. Hubert. (2007). Rapid and widespread dissemination of
multidrug-resistant bla CMY-2 Salmonella Thyphimurium in Mexico. Journal of Antimicrobial Chemotherapy 60: 398-401.
Hasman H., D. Mevius, K. Veldman, I. Olsen and F. M. Aarestrup. (2005). β–lactamases among extended-sprectum βlactamase (ESBL)-resistant Salmonella from poultry, poultry products and human patient in The Netherlands. Journal of
Antimicrobial Chemotherapy 56:115-121.
Antunes P., Machado J., Peixe L. (2006). Characterization of antimicrobial resistance and class 1 and 2 integrons in
Salmonella enterica isolates from different sources in Portugal. Journal of Antimicrobial Chemotherapy 58: 297-304
Olufemi O. I., E. Adesola A. 3, G. Adetunji. 2012. Multidrug Resistant Escherichia coli O157 Contamination of Beef
and Chicken in Municipal Abattoirs of Southwest Nigeria. Nature and Science 2012;10(8).
Hütt P., J. Shchepetova, K. Löivukene, T. Kullisaar and M. Mikelsaar. 2006. Antagonistic activity of probiotic
lactobacilli and bifidobacteria against enter- and uropathgens. Journal of Applied Microbiology 100:1324-1332.
Naghizadeh R. S., N. Farahmand, I. Ouoba, J. Sutherland and H. Ghoddusi. (2012). In vitro assessment of the
Bifidobacterium spp. for antimicrobial activities. J Food Process Technol, 3:10
Vinothkumar P., P.Sheik Mohamed, O. S. Aysha, S. Valli, P. Nirmala, A. Reena, EK. Elumalai. (2011). Microbial
Product Act As a Probiotic against Human Intestinal Pathogens. International Journal of Pharmaceutical & Biological
Archives 2:1172-1174
Bilkova A., H. Kinova Sepova, M. Bukovsky, L. Bezakova. (2011). Antibacterial potential of lactobacilli isolated from a
lamb. Veterinarni Medicina, 56, (7): 319–324
Collado M. C., Hernández M., M. Sanz, (2005). Production of bacteriocin-like compounds by human fecal
Bifidobacterium strains. J Food Prot 68:1034-1040.
Delgado S., E. O´Sullivan, G. Fitzgerald and B. Mayo. (2007). In vitro evaluation of the probiotic properties of human
intestinal Bifidobacterium species and selection of new probiotic candidates. J. Appl. Microb. 104:1119-1127.
Alakomi A. L., E. Skytta, M. Saarela, T. Mattila, K. Latva-Kala, L. M. Helander. (2000). Lactic Acid Permeabilizes
Gram-Negative Bacteria by Disrupting the Outer Membrane. Appl. Envir. Microb. 66:2001-2005.
Ananou S., A. Galvéz, M. Martínez-Bueno, M. Maqueda and E. Valdivia. (2005). Synergistic effect of enterocin AS-48
in combination with outer membrane permeabilizing treatments against Escherichia coli O157:H7. J Appl Microb
:1364-1372.
Russell, J.B. and F. Diez-Gonzalez. (1998). The effects of fermentation acids on bacterial growth. Advances in
Microbial Physiology 39:206-235. 11.
Presser K. A., Ratkowsky D.A., Ross T. (1997). Modelling the growth rate of Escherichia coli as a function of pH and
lactic acid concentration. Appl. Envirom. Microbiol. 63:2355-2360.
Eklund T. (1983). The antimicrobial effect of dissociated and undissociated sorbic acid at different pH levels. J Appl
Baceriol 54:383-389.
Portella A. C. F., S. Karp, G. Newton, A. L. Woiciechwski, J. L. Parada, C. R. Soccol. (2009). Modelling Antagonic
Effect to of Lactic Acid Bacteria Supernatants on Some Pathogenic Bacteria. Braz. Arch. Biol. Tech. 52:29-36.
Bielecka M., Biedrzycka E., W. Smoragiewicz, M. Smieszek. (1998). Interaction of Bifidobacterium and Salmonella
during associated growth. International Journal of Food Microbiology, 45:151-155.
Kailasarapathy K. and J. Chin. (2000). Survirval and terapheutic potential of probiotics organism with reference to
Lactobacillus acidophilus and Bifidobacterium spp. Inmunology and Cell Biology. 78:80-88